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Abstract

We have developed several novel ways of locomotion at low Reynolds number, for Newtonian
and non-Newtonian fluids: Robosnail 1 and 2, which operate on a lubrication layer, and the
three-link swimmer which moves in the free fluid. Robosnail 1 utilizes lubrication pressures
generated in a Newtonian fluid under a steadily undulating foot to propel itself forward.
Tractoring force and velocity measurements show reasonable agreement to analytic and
numerical solutions. Robosnail 2, modeled after real land snails, uses in-plane compressions
of a flat foot on a mucus substitute such as Laponite or Carbopol. Robosnail 2 exploits the
non-Newtonian qualities (yield-stress, shear thinning) of the fluid solution to locomote. The
glue-like behavior of the unyielded fluid allows Robosnail 2 to climb up a 90 degree incline
or inverted 180 degree surfaces. The three-link swimmer is a device composed of three rigid
links interconnected by two out-of-phase oscillating joints. It is the first experimental test
that successfully proves that a swimmer of its kind can swim forward in the Stokes limit.

Thesis Supervisor: Anette Hosoi
Title: Associate Professor
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Chapter 1

Introduction

The realm of the low-Reynolds number encompasses the world of the very small, the very
viscous, or the very slow. If we were to shrink the size of a microbe, or to swim in a pool of
honey, or to slow our motions to a snail’s pace, we would catch a glimpse of this world. It
would appear to us very alien because of the different physical laws that dominate. At this
scale, the simple task of getting around involves strategies that are often counterintuitive
and not applicable to the larger scales in which we live. Fortunately for us, it is not difficult
to study this world, since varying the Reynolds number only requires changing the speed,
length, or fluid viscosity, and not necessarily all three together. This way, we can understand
microscopic systems by building a macroscale experiment and controlling the speed and/or
fluid viscosity to achieve the correct Reynolds number.

Observations of low Re organism suggests that the realm of low Re required a very
different type of locomotion. Most such swimmers do not resemble the macroscale (high
Re) swimming and flying organisms we are used to seeing. Instead of wings, fins, and flaps,
we find mostly cilia and flagella as the dominant means of propulsion. One of the first
researchers of low-Re locomotion was G. I. Taylor [7], who introduced the idea of reversible
flow at low Re. Taylor also looked into the mechanics of flagellar propulsion, and built
simple flagellar swimmers to demonstrate their efficacy. Another low-Re device, proposed
by E.M. Purcell [6], was the three-link swimmer, hypothetically the simplest mechanism
of oscillating links capable of locomotion in the Stokes limit (Re = 0). While Purcell had
proposed that such a swimmer should be able to generate a displacement, no real prototype
of this mechanism has been made until now.

While the locomotion of small mobile objects in the free fluid at low Re has been well
studied, the motion of organisms over a thin layer of fluid has been covered relatively little.
Vlès [8] made one of the first detailed observations in writing of the contractile motions of
the snail’s foot during locomotion. Decades later, Lissman [5, ?] made detailed kinematic
observations of the foot motions of snails and hypothesized certain ways that a snail might
use a single foot to move over different surfaces. Denny [3, 4, 2], was the first to recognize
that the non-newtonian properties of snail mucus played an important role in locomotion.

The research in snail locomotion has inspired a branch of low-Reynolds number loco-
motion based on peristaltic waves. It has been known that motions of boundaries over
thin layers of viscous fluid can generate very large shear and normal stresses in the low - Re
lubrication regime. While engineers have long taken advantage of these lubrication forces in
the design of bearings, we sought to prove that similarly forces could be used for propulsion.
To the best of our knowledge, until Robosnail 1, there has been no prior experimentation
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with free self-propelled peristaltic movers over thin fluids.

1.1 Motivations for Low-Re Locomotion

There are numerous emerging technologies that will make use of low-Re flows and low-
Re locomotion. Microfluidic devices, commonly known as “lab-on-a-chip” devices, will be
able to perform numerous fluid experiments (such as a blood test) using only a fraction
of a sample droplet. Our understanding of low-Re flow will help us manipulate flows in
such devices. Miniature swimming machines may soon be used to navigate tiny fluid-filled
passageways of the human body. As manufacturing methods become increasingly capable
of creating and assembling micro-scale components, these miniature swimmers will become
more widespread. A good general theory of low-Re locomotion will be necessary to design
these miniature swimming devices.

1.2 Motivations for Snail-Inspired Locomotion

The majority of this research has its focus in snail-inspired locomotion. Snails possess a
mode of locomotion that is radically different from that of most other organisms, with the
possible exception of worms. The simplicity of the foot structure (a single muscular foot)
suggests that we should be able to design simple machines likewise capable of a variety
of useful motions. When artificial muscle-like actuators become more widespread, they
could conceivably be joined together easily to make simple snail-like actuators. Snail-like
locomotion devices should be effective anywhere provided there are viscous fluids. If the
fluids are non-Newtonian, there can be further advantages, such as the ability to climb
walls, which was one of the design goals of Robosnail 2.

In addition to micro-robotics, the field of oil drilling could potentially benefit greatly
from the application of snail-like devices. The setting of an oil well can be highly challenging
as they are often muddy, vertical and irregular. A flexible slug-like or snail-like device may
be more adept at navigating the messy environment of a downhole than a more conventional
rigid, jointed mechanism.

1.3 Description of snail locomotion

What snails lack in speed, they make up for in versatility. Snails are capable of climbing walls
and ceilings, as well as traversing some very rough, irregular terrains, and are not hindered
by wet surfaces. They accomplish this by carrying their own fluid lubrication, mucus. As
the snail moves its muscular foot, the forces are transmitted to the substrate through the
thin mucus layer. Thus the study of snail locomotion is a study of fluid dynamics. The
viscous, non-Newtonian mucus and complex motions of the foot seem to be optimized for
the snail’s unique way of locomotion.

The most important property of mucus that allows a snail to exhibit such versatility in
locomotion is its finite yield stress. In other words, the mucus, even though it is more than
90% water, behaves as a solid unless it is stressed past a certain amount. The ability of the
mucus to solidify allows a snail to maintain traction on a variety of surfaces, to climb walls,
and to remain stuck on a wall or ceiling even when it is not moving.
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Figure 1-1: One prototype of robosnail 2, moving in an inverted position

1.4 Description of various Robosnails

We have constructed two types of the mechanical snail, Robosnail 1 which uses a waving
foot to move over viscous newtonian fluids, and Robosnail 2 that uses a sliding foot to
move over a shear-thinning fluid. The physical models of each locomotion method are
distinctly different from one another. In terms of biomimicry, Robosnail 2 is the closest
to the functioning of real snails, using adhesion and sliding rather than peristalsis and
lubrication pressures as in the case of Robosnail 1. While Robosnail 2 is constrained by
the limitation that it requires non-newtonian fluid to operate, it is capable of such feats
as moving up walls or in an inverted position. Both types of snail were explored in some
depth, and the results are presented here.

1.5 Description of three-link swimmer

The three link swimmer, like the robosnails, is the first machine of its type to be constructed.
It is theoretically one of the simplest machines that theory predicts is able to swim in the
stokes limit. Physically, it can be thought of as a free-swimming cousin to the peristaltic
waving robosnail, where the waving motion is discretized into three rigid sections rather
than a continuous, smooth wave. However, the three link swimmer has given rise to further
research into n-link swimmers which approach the continuous limit. Because of the complex
nature of the flow around the three-link swimmer, few equations are presented; however, the
experimental results increase our understanding of the swimmer’s behavior at low Reynolds
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number.
These devices together represent a diverse range of approaches to locomotion in vis-

cous fluids, and have sparked a new generation of propulsive devices for locomotion at low
Reynolds numbers.
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Chapter 2

General Theory

2.1 Locomotion at Low Reynolds Number

All of the systems described here operate at extremely low Reynolds number, the regime
where viscous forces dominate over all inertial and buoyant forces. In this limit, the Navier-
Stokes equations reduce to the Stokes equations. The Navier-Stokes equations for incom-
pressible Newtonian fluids,

∇ · v = 0

ρ(
∂v

∂t
+ v · ∇v) = −∇p + µ∇2v + f (2.1)

where ρ is the fluid density, v is the velocity field, p is the pressure, µ is the fluid viscosity,
and f is an applied body force on the fluid.

The Reynolds number describes the relative magnitudes of inertial and viscous forces:

Re =
ρV L

µ

Where V and L are characteristic velocities and lengths in the flow. In the absence of body
forces, at the limit of low Reynolds number (usually when V or L, the right-hand terms
Navier-Stokes equation become zero and f = 0, resulting in the Stokes equation:

∇ · v = 0

∇p = µ∇2v (2.2)

2.2 Lubrication Flows

When the fluid in question is constrained to flow inside a thin fluid gap, further simplifica-
tions can be made to the analysis and the Navier-Stokes equations involved. In this limit,
the Stokes equations reduce even further to the lubrication equation:

∂p

∂x
=

µ∂2u

∂y2

19



The pressure of the fluid varies only along the direction of the film, momentum effects are
negligible.

2.3 Snail Locomotion

A generalized snail of this type should have a continuous foot, with a thin mucus layer of
variable height, whose surface moves with an predefined cyclic motion. Thus, while the foot
is flexible and each point on the foot moves independently, the average velocity of any one
point on the foot is equal to the average velocity of the snail itself.

The net force on the snail from the fluid is the integral of all the fluid forces acting on
the foot. At the low Reynolds numbers involved, all flows can be considered quasi-steady,
so acceleration terms are ignored:

Ft =
∫

A
dF =

∫
A

τdA +
∫

A
pdA

where Ft is the tractoring force (the force required to pull a given payload, or any given
external force), A is the total area of the foot, τ is the shear stress in the fluid tangential to
the foot surface, and p is the pressure within the fluid. Theoretically, a snail can generate
propulsive forces from any combination of pressure and shear forces. In our case, we separate
the test the two phenomenon separately. Robosnail 1 is a pressure-driven mechanism, while
Robosnail 2 relies on shear forces.

2.3.1 Shear-thinning fluids

While Newtonian fluids have a constant viscosity and therefore a linear response to in-
creasing strain rate, non-newtonian fluids have variable viscosity and a non-linear response.
There exist numerous different types of non-newtonian fluids, such as shear thickening flu-
ids, shear thinning fluids, etc. Snail mucus is a shear thinning fluid with some viscoelasticity.
The most important property that allows snails to move is the shear-thinning behavior.

In its most basic definition, a shear-thinning fluid is one which has a viscosity that
decreases with increasing shear rate. The following plot shows the shear rate - viscosity
relationship of Carbopol, the main fluid used to test Robosnail 2. Carbopol is a synthetic
thixotropic fluid, chosen for its rheological similarity to real snail mucus.

Two secondary properties that affect snail locomotion are the finite yield stress and
the restructuring time. Carbopol and snail mucus, for our purposes, can be classified as
types of finite yield stress fluid, which is one particular type of shear-thinning fluid. The
finite yield stress fluids, as opposed to general shear-thinning fluids, allow the snail to move
upside-down on surfaces, and to passively glue themselves to vertical or inverted surfaces
when they are not moving. This is possible because the fluid has a range of possible stresses
under which the fluid effectively remains solid, gluing certain parts of the snail onto the
substrate.

To be more accurate, snail mucus does not have a true solid state, but a high viscosity
(in the ”unyielded” regime) where the viscosity is many orders of magnitude higher than in
the ”yielded” regime. The high viscosity is so great and the resultant flow rates are so low
that the fluid can be practically considered a solid.
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Figure 2-1: Shear-rate / viscosity curves for various concentrations of Carbopol, a synthetic
fluid used for the lubrication layer of Robosnail 2. Note that for each curve, the viscosity
begins to drop several orders of magnitude after a certain shear rate. This is the shear-
thinning behavior; Newtonian fluids would have a constant viscosity regardless of shear
rate. The shear-thinning property is a critical property that allows Robosnail and most
snails to move.
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Chapter 3

Robosnail 1

3.1 Introduction

Many organisms use undulation as a means to move through fluids, or to transport fluids.
Robosnail 1 was built with the intention to emulate peristaltic crawlers, using a flexible,
powered foot to move over a layer of viscous newtonian fluids, but as we shall see in the
following chapter, this type of crawling is more ”snail-inspired” than ”snail-like.” In actuality
most snails use a different mode of locomotion (which we explored with the Robosnail 2
prototypes), but we decided to continue pursuing the undulating snail model. Regardless
of its abundance in nature, peristaltic lubrication propulsion has proven to be an effective
mode of transportation.

The basic idea of robosnail 1 is to use a waving sheet to squeeze viscous fluids backwards
through the thin gap between snail and substrate. The reaction force of the fluid on the
snail propels the snail forwards. Our initial concept machines could undulate a thin rubber
foot over a layer of glycerol, and thus propel themselves at a speed close to the undulation
speed.

3.2 Theory

3.2.1 Underlying physics

Robosnail 1 locomotion is analogous to peristaltic pumping, for example the movement
of fluid through the intestine is due to the peristaltic motion of the intestinal wall. In
Robosnail 1, the foot is like the pumping wall, and as with peristaltic pumping, the wall
exerts a force on the fluid. Unlike peristaltic pumping, the fluid in turn transmits the
force on the substrate which causes motion of the pumping device. The changing shape
of the snail foot is described by the fluid thickness height ĥ(x, t), which varies with time.
For simplification of analysis, we assume that the waving membrane is periodic with a
wavelength λ such that ĥ(x, t) =ĥ(x̂ + nλ, t) and that the waves travel with a speed V̂w

such that ĥ = f(x̂ − V̂wt). We define the average height Ĥ = av(ĥ) and an amplitude
â = Ĥ − min(ĥ)The snail travels at some resultant velocity V̂s. For practical concerns, it
may also be tugging some payload (or tractoring force) F̂t.

Natural mucus used by snails is a viscous, non-newtonian fluid which has a variable
viscosity dependent on shear rate. As shown in later chapters, real snails exploit these
non-newtonian properties in their method of locomotion; their motions would be severely
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handicapped if their mucus were a newtonian fluid. Because robosnail 1 relies on newtonian
effects, the ’mucus’ used with robosnail 1, can be a viscous newtonian fluid, and will be
modeled as such. Since the layer of fluid is thin, we assume that the lubrication approxima-
tion holds everywhere in the fluid film. Under this assumption, pressure varies in the x−
and y− directions, but not in the z− axis. Also, because inertial effects are much smaller
than viscous effects, the flow is considered quasi-steady. In this limit, the Navier-stokes
equations reduce to:

µ
∂2u

∂z2
=

∂p̂

∂x̂

At this point it becomes useful to non-dimensionalize the equations, rescaling the rele-
vant quantities as follows:

x̂ = λx

ẑ = Ĥz

û = V̂wu

p̂ =
λµV̂w

Ĥ2
p

ĥ = Ĥh

V̂s = V̂wVs

and

F̂t =
λ2µV̂w

Ĥ2
ft

The lubrication equation becomes:

∂2û

∂z2
=

∂p

∂x

in dimensionless form.

For thin profiles, pressure does not vary across the depth of the film. Hence, for any
given x-position, the pressure is constant. The flow profile then must be parabolic for any
given x-position, taking the form

du

dz
=

∂p

∂x
z + C1

u(z) =
∂p

∂x
z2 + C1z + C2 (3.1)

where the integration constants C1 and C2 are determined by boundary conditions at the
foot and the substrate. To solve for these constants we switch to a reference frame traveling
with the wave. In this frame, the height function of the foot h(x) does not vary with time.
Because the flow is steady, the volume flow rate Q =

∫
udz (per unit width) is a constant.

The top and bottom surface velocities in the new reference frame are:

V̂ |z=0 = V̂w − V̂s

V̂ |z=h = V̂w
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Figure 3-1: Switching to a useful reference frame for solving the flow underneath a self-
propelled, peristaltic waving membrane. In the laboratory frame, the foot height is a
function of x and t . In the wave frame (a frame of reference following the wave crests) the
height is only dependent on x and the flow can be modeled as steady.

or in dimensionless terms,
u|z=0 = 1− Vs

u|z=1 = 1

Applying these boundary conditions to equation 3.1, the velocity profile becomes

u(z) =
1
2

∂p

∂x
z(z − h) + Vs(

z

h
− 1) + 1 (3.2)

We can solve for Q by integrating Q =
∫ h
0 udz

Q =
h3

12
dp

dx
− h(1− vs

2
) (3.3)

solving for dp
dx ,

dp

dx
=

12
h3

[h(1− vs

2
)−Q] (3.4)

Applying the periodic boundary condition∫ 1

0

dp

dx
dx = p(1)− p(0) = 0

, integrating 3.4 and solving for Q gives

Q = (1− Vs/2)
I2

I3
(3.5)

where

25



Ij =
∫ 1

0

dx

hj

Forces come from the viscous shear at the surface of the membrane, and from the high
pressure zones where the foot is nearly touching the ground. The shear forces act parallel to
the foot surface, and the pressure force acts perpendicular to it. We are mainly concerned
with forces in the x- direction (vertical forces depend on the average pressure under the
foot, which can vary arbitrarily according to initial conditions).

fshear,x =
du

dz
|y=hdA

fpressure,x =
∫ 1

0
p
dh

dx

f = fpressure,x + fshear,x =
∫ 1

0

(
p
dh

dx
+

du

dz
|y=h

)
dx

Integrating the pressure term by parts and substituting 3.4 for dp
dx yields

fpressure,x =
∫ 1

0
p
dh

dx
dx =

(
12I1 −

I2
2

I3

)(
1− Vs

2

)
(3.6)

3QI2 = (3− 2Vs)I1

Substituting Q from equation 3.5 gives the relation between velocity and tractoring force
of the snail:

Vs =
6(1−A)
4− 3A

− f

I1(4− 3A)
(3.7)

Where the shape function

A =
I2
2

I1I3

The relation between force and velocity takes the simple linear form of f = fstall −mVs

where fstall is the stall force, and m is a constant. Their respective values can be found by
rearranging terms in equation 3.7:

fstall = 6I1(1−A) (3.8)

m = −I1(4− 3A)

When Vs = 0 the force reaches the stall force. As the applied force on the snail is
decreased, the velocity increases linearly until it reaches the free velocity, Vs,free

Vs,free =
6(1−A)
4− 3A

(3.9)

Figure 3.7 illustrates this straightforward relationship, which can be used to predict the
snail’s resultant velocity given any applied force.

The free velocity and dimensionless stall force, which we will also call the stall-force
constant, fstall, is purely a function of the foot shape, because the Ij and A are functions
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Figure 3-2: The relationship between dimensionless applied force and snail velocity. As the
tractoring load is increased to the stall force, the velocity decreases to zero. The full graph
extends past f < 0, where increasing the tractoring force beyond the stall force would cause
the snail to drift backwards, and Vs > Vs,free where a negative (pushing) tractoring force
would increase the snail velocity past Vs,free.
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Figure 3-3: Dimensionless stall force for a sinusoidal waving foot. Note that as the amplitude
gets larger, nearly touching down on the substrate, lubrication pressures increase, and the
stall force increases greatly.

of the foot shape and of nothing else. For a sinusoidal foot, the foot shape is determined
by a single dimensionless parameter, a

h0
or the ratio of amplitude to average height. This

is a practical parameter that states how close the foot is touching down to the ground, and
is limited by 0 < a

h0
< 1, that is to say, for any wave profile, it can be completely flattened

setting a = 0, or touching the substrate when a = 1. In most engineering applications, one
would want to maximize the stall force of a robosnail. The simplest way to increase the
stall force is revealed by equation 3.2.1- by decreasing the clearance between the foot and
the ground; other methods would be to increase the number of waves created by the foot,
or to increase the viscosity of the working fluid, all of which are proportionally related to
the dimensional stall force.

A practical result of the exact solution for a sinusoid is that the dimensionless waving ve-
locity can be well-approximated by a linear relationship with coefficient 1, that is vs/vw a/h0

This approximation is helpful for making predictions on the free velocity without having to
redo the equations or run simulations.

An interesting note is that the resultant dimensionless force and velocity are merely a
function of the wave shape. This is the same as for Stokes flow of self-propelled objects
in an infinite fluid, the objects’ motion is only a result of the geometry. For the snail, the
problem is even more simplified, as the velocity and force can be predicted as long as the
height is an integrable function.
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Figure 3-4: Theoretical dimensionless free velocity for a sinusoidal waving foot. Note that
as the amplitude gets larger, nearly touching down on the substrate, the velocity of the
snail approaches the waving velocity.
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Figure 3-5: Free velocity behavior of robosnails using various wave shapes. The square
wave performs favorably at low amplitudes, but as the amplitude nears a = 1, the sharper
wave profiles gain an advantage. Note that the model predicts that certain wave shapes can
achieve V̂s > V̂w.

3.2.2 Various wave shapes

As the equation shows, the force and velocity relation is a function of the height profile,
which has been left in the general form h(x). Thus any number of height profiles can be used,
theoretically, resulting in a different force-velocity curve for each one. For the sinusoidal
curve, or any shape curve, the first, easiest way to change the dimensionless height profile
is to vary the amplitude with respect to the offset height. This is varied in the sections
to follow. Figure ??hows the dimensionless free velocity as a function of dimensionless
amplitude for a variety of waving profiles. The most interesting piece of information is that
for some profile shapes, such as the triangle wave, the expected snail velocity is greater
than the waving velocity. This jump in snail velocity contradicts our intuition that the
snail velocity should be some fraction of the waving velocity, no matter what.

To further understand the increase in speed due to sharp waveforms, we consider the
interaction of the foot and the thin fluid layer. Upon close inspection, the extra ”boost” in
speed for the triangle wave arises near the lowest extremities of the waveform. When any
the wave shapes approach the substrate, the pressure buildup and majority of propulsive
force comes from the area immediately surrounding these minimum points. A snail with
sinusoidal wave approaches the waving velocity as the waves near the substrate, but a snail
having sharp waving profile should move even faster: near the touchdown points, the surface
is much more sloped to take advantage of the pressures propelling the snail, furthermore,
there is less surface in close proximity to the ground, so the shearing friction is greatly
reduced.

To further explore this effect of sharp waveforms, we attempt to consider more waveform
shapes besides the sinusoid and triangle wave. It makes the most sense to consider all wave-
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Figure 3-6: ”composite” waveform made of two parabolas. By varing the sharpness factor fs

(the relative size of the first parabola to the entire wavelength) of the downturned parabola
from near 0 to near 1, we can vary the free velocity as a function of the amplitude.

forms which have lower extremities that fall somewhere between the ”smooth-bottomed”
sinusoid and the ”sharp-bottomed” triangle wave. Of course, there is an infinite number
of wave shapes we can consider, as almost any arbitrary repeating shape can be made into
a wave profile, at least in theory. However, it is the shape of the lower points that we
are interested in, so we wish to find a wave type accordingly whose sharpness we can vary
with ease. One simple solution is to replace the sinusoid with two parabolas, one opening
upward and one opening downward. The advantages of this approach are that there are
no slope discontinuities to disrupt the force equation, and we can indeed vary the sharp-
ness by changing the sharpness factor fs, the ratio of width of one parabola to the entire
wavelength. As fs approaches 1, the second parabola becomes nothing, and the waveform
becomes an inverted parabola, repeating. While this is not exactly a triangle wave, it should
behave much like one, since the low areas resemble the triangle wave, and the majority of
the propulsive force is generated in this area. We would like to know at which fs the snail
starts to move faster than its own waving speed.

Since the velocity is a function of wave shape only, we use the velocity equation but
instead of the sinusoid function we enter the parabola segment function and solve for free
velocity as a function of the foot nearing the substrate (expressed as a variable amplitude
A but defined for the irregular wave shape as h0− hmin so that the geometry is normalized
as with the sinusoidal case). The solution for free velocity as the foot approaches substrate,
for various ”sharpness ratio” fs is shown in the figure 3-7. The ”overdrive” phenomenon
occurs roughly at a ratio of fs = 0.7.

3.2.3 Three-dimensional effects for a finite-width snail

The two-dimensional theory is sufficient to explain how peristaltic motion of a membrane
over a thin viscous fluid can propel itself. However, in most real-life situations requir-
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Figure 3-7: Dimensionless velocity as a function of the ”sharpness ratio” of two parabolas.
As one of the parabolas becomes less than 30 percent of the total wavelength, the snail
begins to move at a speed greater than the waving speed V̂w.
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ing robosnail-like motion, the snail has finite width, resulting in edge effects that cause a
discrepancy between the two-dimensional and full three-dimensional results for force and
velocity. At the edges of a finite-width waving sheet, the lubrication pressures built up
underneath the waving sheet in regions near the substrate are diminished as fluid is allowed
to leak to and from the outer region. Since the propulsive force is an integral of the pressure
forces on the foot, we expect there to be losses in the expected pressure force. Meanwhile,
we would not expect the shear losses due to forward motion to decrease as much, because
shear stresses do not ”leak” as pressure would. The overall expected result of imposing
finite-width conditions would be decreases in the towing force, free velocity, and efficiency.
This is verified by the and numerical simulations and experiments.

Due to the complexity of the three-dimensional flow in the gap of varying height, we
found no analytical result to describe the pressure field under a finite-width sheet. However,
we were able to numerically solve for the flow and pressure field using the three-dimensional
lubrication equation, which, like the two-dimensional lubrication, remains valid as long as
the Reynolds number is sufficiently low and the gap height sufficiently small compared to
the wavelength.

In the simulation, the foot was divided into discrete segments, over one wavelength with
boundary conditions of periodicity between the front and rear edges, and pressure falling
to zero at the edge. The pressure force was found, as well as the net propulsive force, which
is the integral of the pressure forces in the direction of travel. The velocity was solved in a
manner analogous to the two-dimensional case. Figure 3-8 shows one characteristic plot of
pressure over the surface of the foot.

The resultant force-velocity curves and pressure profiles were compared to the two-
dimensional case, with identical amplitude and height parameters, and it the simulations
predict that the finite width snails did not perform as well as the infinite case, matching our
expectation. As we increase the snail width, the fluid has less opportunity to leak and the
profile begins to resembles the 2D case. Figure 3-10 compares the ratio of stall force in 3D
to the expected stall force in the 2D case while varying the foot width from near zero, two
several times the wavelength. We see that for a given snail foot width, wave profiles that
are closer to the ground have higher force closer to the 2D prediction compared to wave
profiles that ride higher. Intuitively this makes sense as the fluid trapped in the small space
between wave and ground would be less susceptible to leakage than the fluid underneath a
larger space. At lower amplitudes of 0 < a < 0.1, the snail’s 3D to 2D force ratio remains
virtually unchanged. This lower limit of force at low waving amplitudes suggests that the
propulsive force is generated over a large area of the foot rather than concentrated spots
along the low areas, and as the edge leakage affects the wider gap areas of the foot, the
entire pressure field is affected by the leakage at these small amplitudes.

For all of the finite width cases (and with the later experiments), the analysis was done
with the foot edges open to the fluid without any type of sealing. We expect a partial seal
could be created with a wall that extended near to the substrate would be one way to hold in
some of the pressure. We should expect some optimal separation between sealing wall and
substrate where the pressure could be contained appreciably while the shear stress losses in
the fluid gap between the edge of the sealing wall would not be to great as to nullify the
benefits of the seal. Another way to improve performance, aside from building a wide snail,
is to run the system inside a cylindrical environment, and to have the peristaltic motion
of the foot generate waves in the axial direction inside the cylindrical hole (or around the
outside of a cylindrical rod). This way, there will be no edge effects except the leading and
trailing edges, and if the fluid layer is small in comparison with the rod, the fluid flow and
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Figure 3-8: A typical Matlab simulation result of pressure underneath a finite width, peri-
odic waving robosnail 1 foot. Only one side of a region of one wavelength long is shown.
The simulation itself uses a periodic end conditions in x and is mirrored along the x-z plane.
The waving foot generates a pressure similar to the two-dimensional waving robosnail foot
near the centerline, but at the edges, the fluid is allowed to leak, and pressure decreases,
decreasing the total propulsive force.
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Figure 3-9: Tractoring force, snail velocity, and centerline pressure plot for robosnail 1,
comparing a finite width snail of waving amplitude 0.8 times the wavelength, and a width
equal to the wavelength with an infinitely wide snail. The wave shapes for both cases are the
same. The finite snail suffers from edge leakage, which degrades the maximum tractoring
force and velocities, as well as the efficiency. The centerline pressure serves as a qualitative
evaluation of how much propulsive pressure is lost overall in the finite case.
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Figure 3-10: Simulation results showing ratio of tractoring force for a finite-width robosnail
compared to the same robosnail 2D analytical result, with sinusoidal wave profile. Note
that after a < 0.1 the expected force ratio follows the same curve.
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forces can be analyzed using the 2D method.

3.2.4 Power and efficiency

The input power to a Robosnail device can be readily calculated with a simple integral. For
every small section of foot, the differential amount of force exerted is equal to the pressure
in the fluid times the differential area. For thin fluid layers, we can imagine the foot as
being actuated by numerous small linear actuators, each feeling a resistance force of

dF = PdA = bPdx

the differential power exerted is the differential force times the vertical waving velocity at
that point.

dẆ = VydF = VybPdx

.

Ẇ = b

∫ L

0
VyPdx

Recall, however, that Vy = Vw
dh
dx , so that

Ẇ = Vwb

∫ L

0

dh

dx
Pdx

Since Fx,P = b
∫ L
0

dh
dxPdx, the power expended simplifies to the expression

Ẇ = VwFx,p (3.10)

The efficiency of the snail is the ratio of useful power to the power expended:

η =
V̂sFt

V̂wFx,P

=
Vsft

fx,p
(3.11)

In the 2D case, we can substitute the expressions for the horizontal pressure force 3.6 and
snail velocity 3.7 to find an analytical expression for the efficiency as a function of snail
velocity:

η2D =
I1Vs[6(1−A)− Vs(4− 3A)][

12I1 −
I2
2

I3

] [
1− Vs

2

] (3.12)

In three dimensions, the snail velocity and pressures can be found numerically. Figure 3-9
compares the efficiency for a the 2D case and a typical 3D case, where the snail width is
0.8 times the wavelength. The wave shapes for both cases are the same. The finite-width
snail generally experiences a lower efficiency than its 2D counterpart, as we had expected.

3.3 Mechanisms

The most basic wave that can be generated with the waving foot is a sinusoidal wave.
To do this, we used a shallow helix threaded through slotted plates which are constrained
to move vertically. The bottom edges of the rectangular plates are affixed to a flexible
membrane. Each of the plates then acts as a connecting rod, with its section of helix acting

37



Figure 3-11: Partially exploded view of Robosnail 1 showing motor/gearbox assembly,
rotating helix, slot plates, and membrane.

as a crank, transferring the vertical component of its rotational motion to its part of the
membrane. The helix, thus acting as a crank, was driven by a heavily geared-down motor.
The resultant motion of the rotating helical crank is a traveling sinusoid along the length of
the membrane. The wave speed is simply equal to the wavelengths divided by the rotations
per second.

A handful of designs were proposed for the construction of a peristaltic robosnail that
could mimic any waveform, but of the few that were built ultimately none of the designs
tested were reliable enough to generate useful data. One of the main difficulties was to
create a device with high enough resolution to emulate the sharp waveforms that are of the
most interest. Many of the devices required a large number of linkages each connected to a
cam follower, but the complexity of the systems made construction of such devices difficult.
However, they are included in here for the sake of discussion and completeness.

One cam-driven robosnail that was actually built (3-12 involved an interchangeable cam
which could accommodate up to 64 cam followers. The membrane was wrapped around in a
circle concentric with the cam, so the motion of the snail (actually the fluid, as the tank was
made rotatable) was in a circle concentric with the rest. This was done for two reasons, to
simplify the machine enough so it could be built, and to make the waveform truly periodic.
As long as the width of the snail was small enough compared to the mean diameter of the
membrane, we could still compare the results to the 2D theory. The experiment yielded
little useful data, as the membrane was barely wide enough to generate force, so the tank
rotated much less than the 2D prediction. The snail was invented and prototyped at a
time when the 3D theory was still being formulated. Later on, more of the 3D theory and
experiments were finalized, and showed that we had been operating at such a low aspect
ratio of width vs. wavelength, that only a small velocity and force would be measurable
compared to what the infinite-width snail would have generated. The effect of the pressure
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Figure 3-12: Side cross-section of the ”ring snail” with interchangeable cams

leakage from the sides removed almost all propulsive force. What further complicated the
analysis was that the tank walls inhibited some of the pressure loss, so while the snail was
far from the ideal infinite case, the results could neither be directly compared to the 3D
simulations, which described a free fluid with no side walls. The snail suffered from high
friction at the cam followers, even with only 8 followers installed; this suggested that a
larger number of followers would likely result in unpredictable outputs.

Another proposed method to generate arbitrary waveforms was to use a semisolid belt
with waveform ”chunks” attached on the outer surface. The belt would run against a
stretched membrane so that its shape would be transferred onto the membrane while the
surface of the membrane would remain more or less at a constant place rather than being
pulled along with the belt. A similar idea involved using screwlike rollers to transfer a sharp
trough wave profile onto a membrane with lateral stiffness members. (see figure 3-14) As all
of these proposed devices involved rubbing of a tensioned membrane against a moving form,
we doubted that we could build an effective device with enough tension in the membrane to
hold it against the form to counteract the high pressures at the wave troughs, while having
a low enough friction between the moving form to run reliably. The conclusion was that a
system using cams and actuators would likely be more efficient albeit harder to construct.

In the end, the helix-driven sinusoidal robosnail 1 models were the most reliable versions
and will be the focus of this study.
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Figure 3-13: Some interchangeable cams that would allow various wave shapes for the
ring/periodic robosnail 1.

40



Figure 3-14: Another robosnail 1 type design for generating a non-sinusoidal waveform in
the membrane. This particular design aims for the ”overdrive” phenomenon where the
snail velocity exceeds its own waveform velocity. The membrane is reinforced with lateral
stiffness members, and is stretched across two spiral cams. The motion of the
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Figure 3-15: Setup for measuring free velocity for robosnail. The channel contains the
working fluid, enough to submerge the entire foot so that the peristaltic motion does not
entrain air bubbles during operation. The laser sheet shone at at angle onto the bottom
foot surface, so that the profile could be measured and the wave profile and fluid thickness
could be determined.

3.4 Experiment

Several experiments were conducted to confirm the analytical and numerical results. As we
have seen already, many wave shapes result in different force or velocities, and conceivably
many other waves can be experimentally analyzed for their behavior. Due the difficulty
of constructing a device to generate custom waveforms, we only collected data for the
sinusoidally waving robosnail. The experiments were mainly to confirm that the theory
predicting force and velocity were reliable.

The first experiment was to test the free velocity of the snail without pulling any load.
The snail was run in a pan of glycerol for some tests, later switching to silicone oil (the
hydroscopic quality of glycerol varied its viscosity from day to day, introducing unwanted
experimental errors). The snail was first tested without any support - it was allowed to sink
freely into the liquid, then run to find the free velocity as the foot neared the substrate. In
later experiments the snail was placed on a track which held the snail at a constant height
from the substrate. Later experiments also involved a stationary force experiment to test
the stall force of the waving robosnail at various heights and a moving force experiment
(3-16), where various tractoring forces were applied to a waving robosnail, and the resultant
velocity was measured.
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Figure 3-16: Setup for measuring the moving tractoring force of the snail. Small support
wheels on tracks hold the snail at a fixed height from the substrate, while the pulley setup
allows the payload to be easily adjusted.

3.5 Results and Discussion

It was found that the snail performed very much according to the predictions made by
theory and numerical data. First, it was confirmed (figure 3-17) that the free snail velocity
is proportional to the waving velocity when geometry and other variables were held constant.

The second test conducted was the stationary tractoring force, which we also expect to
be proportional to the waving velocity. The data agreed very closely with the numerical
result (figure 3-18).

The last set of data was to confirm the linear tradeoff relationship between tractoring
force and waving velocity. The snail was operated at various waving speeds and the trac-
toring velocity was measured as it pulled loads of varying sizes. The load was increased and
the tractoring force was found to drop linearly (3-19) as the theory predicted.

The last set of data describing the tractoring force varied slightly from the theoretical
value in the slope of the force-velocity curve. The experiment found a greater tractoring
force for higher payloads, and a smaller tractoring velocity near the zero-payload free mov-
ing range. The most likely explanations for this discrepancy is that at low speeds, the
fluid buildup behind the stalling robosnail resulted in an increase in hydrostatic pressure
pushing against the snail in its favor. At high speeds, oil friction in the bearings probably
caused the steeper drop-off in performance. Despite this small deviation from the expected
performance, the results show a close enough correlation to the theory that we can be fairly
confident that the theory and numerical results represent an accurate model of persistaltic
locomotion.
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Figure 3-17: Free velocity of robosnail plotted against waving velocity. Fluid is silicone oil.
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Figure 3-18: Tractoring force of Robosnail 1, plotted against waving velocity. The resultant
tractoring force is linearly proportional with respect to waving velocity, as expected. The
solid line represents the corresponding tractoring force predicted by numerical results for a
snail of aspect ratio b/l = 0.6 with a sinusoidal wave amplitude ratio of a/h = 0.7. Fluid is
silicone oil.
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Figure 3-19: Force-velocity data for Robosnail 1. The payload force was increased while the
robosnail velocity was measured. The snail velocity decreased linearly as expected. Fluid is
silicone oil. The foot aspect ratio is aspect ratio b/l = 0.6, with a sinusoidal wave amplitude
ratio of a/h = 0.7.
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Chapter 4

Robosnail 2

4.1 Introduction

After producing Robosnail 1, we were motivated to develop a machine and fluid system ca-
pable of climbing walls and ceilings like real snails (Robosnail 1 only was effective at moving
over surfaces that were smooth and horizontal). With this goal in mind our continued re-
search after Robosnail 1 led to the creation of Robosnail 2. After reviewing several studies
on land-snail locomotion, we found that most of the snails that were examined moved by
adhesive locomotion, where propulsive forces are through fluid shear, not pressure forces as
in the case of Robosnail 1.

While Robosnail 1 is capable of moving through viscous fluids, it possesses several
limitations. Real snails are known for their ability to traverse vertical and inverted planes,
thus highlighting an important feature of snail mucus - finite yield stress. Robosnail 1,
which is designed to run on Newtonian liquids, cannot climb walls unless it is completely
submerged, due to the consequence of a Newtonian fluid flowing down and out of the gap
by the force of gravity. Even if it were submerged in a viscous fluid, a Robosnail 1 robot
would require some sort of active pumping mechanism to keep itself adhered to the wall
using fluid pressure, while real snails can adhere to a wall even when their foot is immobile.
The benefits of Robosnail 2 mirror those of real snails in more ways than one: by using a
non-Newtonian shear-stress fluid, Robosnail 2 can generate more force whether stationary
or mobile, than Robosnail 1 (per unit of foot area) and was found to be more efficient than
Robosnail 1.

Robosnail 2 will likely prove to be a useful proof-of-concept for later machines that
operate in environments with highly non-Newtonian fluids. The bodies of organisms, oil
drilling sites, lake bottoms, and other muddy environments are a few examples where snail-
like locomotion might be advantageous.

4.2 Theory

At first glance, both Robosnails appear very similar: they are both mechanisms with a
flexible foot, and they propel themselves over a thin lubrication layer of fluid using cyclical
undulations of the foot. Despite these similarities, the two versions are fundamentally very
different. While Robosnail 1 relies on high lubrication pressures to propel itself, Robosnail
2 is propelled by the shear forces within the fluid film, and pressure forces are negligible.
Furthermore, Robosnail 1 was built for use with a viscous newtonian fluid, while Robosnail
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2 requires a non-Newtonian fluid to move forward, and, as we will show later, does not
function with a Newtonian fluid at all.

The phenomenon of adhesive locomotion, as its name implies, is one of selective gluing
and ungluing of an actuated membrane onto a substrate. In this illustration, the mucus acts
as the glue. Unlike an ordinary glue, however, the mucus can be switched from solid to liquid
states when subjected to a sufficient amount of shear force. This is essential in order that the
snail can undergo a net motion. If the snail then generates standing traveling compression
waves from one end of the membrane to another, such that the fluid beneath waves is
sheared to to the point of yielding, then the snail is able to travel forward incrementally
with each new wave. As long as the fluid beneath the areas between compression waves (the
interwaves) does not shear past the critical yield stress, the snail moves forward without slip.
One final, necessary requirement of the fluid is that it be able to re-solidify (or restructure)
after yielding; if this were not the case,

4.2.1 Physics

A snail of this type has a flat foot, with a mucus layer of fixed height, whose surface deforms
with an time-dependent displacement

u = u(x̂, t)

where the deformation u is the displacement of a point on the foot from its average position.
For our purposes, u is constrained to the horizontal plane in the x− direction. We limit our
analysis to traveling waves of a fixed shape

u = (x̂− V̂wt) (4.1)

which are periodic such that
u(x̂) = u(x̂ + λ)

and defined such that the average deformation is zero:

intλ0udx = 0

At this point it is important to know the strain in the foot

ε =
∂u

∂x

which in gives us the foot compression ratio

dx′

dx
= 1 +

∂u

∂x

The snail itself is moving at a velocity V̂s so that the net velocity of a point is the sum

V̂p = u̇ + V̂s

Applying 4.1,

V̂p = V̂w
du

dx
+ V̂s
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The net force on the foot is equal to the tractoring force, and is the integral of all the
shear forces on the foot,

F̂t =
∫

τdA

for a snail of width b and length L,

F̂t = b

∫ λ

0
τ

(
1 +

∂u

∂x

)
dx (4.2)

if the fluid is described by some viscosity µ

F̂t = b

∫ λ

0
µ

V̂p

h

(
1 +

∂u

∂x

)
dx (4.3)

F̂t = b

∫ λ

0
µ

V̂w
du
dx + V̂s

h

(
1 +

∂u

∂x

)
dx (4.4)

Equations 4.3 and 4.3 describe the force-velocity relationship for any snail using in-plane
foot deformations to move on a thin layer of fluid.

4.3 and 4.3 carry several conditions which we assume to be valid: first, that the pressure
gradient dp

dx is negligible and therefore that the velocity profile in the fluid gap is linear. For
these conditions to hold for an incompressible fluid, we must assume that the foot height
h must change with x in order that fluid mass be conserved. However, we will assume
that this change in h is small. Finally, the flow and the snail motion are assumed to be
steady-state, so that inertial forces are negligible. The viscosity µ in this case is understood
to be variable. In most cases described herein, viscosity is a function of shear rate γ̇ = dvx

dy
but can be vary according other factors depending on the type of fluid used. It can be
shown1 when a Newtonian fluid is used, in-plane foot motions cannot create a propulsive
force; therefore, a non-Newtonian fluid is required for robosnail 2 to function.

1When this is the case, equation 4.4 becomes

F̂t =
µb

h

∫ λ

0

(
V̂w

du

dx
+ V̂s

)(
∂u

∂x
+ 1
)

dx

F̂t =
µb

h

∫ λ

0

[
V̂w

(
du

dx

)2

+
(
V̂w + V̂s

) du

dx
+ V̂s

]
dx

F̂t =
µb

h

[∫ λ

0

V̂w

(
du

dx

)2

dx +

∫ λ

0

(
V̂w + V̂s

) du

dx
dx +

∫ λ

0

V̂sdx

]
F̂t =

µb

h

[
V̂w

∫ λ

0

(
du

dx

)2

dx +
(
V̂w + V̂s

)
u|λ0 + λV̂s

]
since the deformation is periodic, u(λ) = u(0), the second term within the brackets goes to zero

F̂t =
µb

h

[
V̂w

∫ λ

0

(
du

dx

)2

dx + λV̂s

]
However, for small strains of the foot du

dx
,
(

du
dx

)2
is small and the remaining integral is negligible. The

remaining result

F̂t =
µb

h
λV̂s

is independent of waving speed, and is only the viscous drag one would expect from dragging a membrane
through a viscous fluid, regardless of whether or not the membrane was deforming.
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The force F is the net tractoring force, equal to the propulsive force exerted by the foot
of the snail.

To simply the theoretical problem and the mechanical solution, we consider a Robosnail
composed of a foot divided into two discrete, uniform sections which can each be considered
to be uniform. We assume that the waves and interwaves are respectively of area Aw and
Ai and move at steady velocities vw and vi. The net force integral can then be calculated as
a product of shear stresses and their corresponding areas. Besides simplifying the analysis,
this model can be achieved mechanically by constructing a foot consisting of n segments,
and to employ a sliding pattern in which only 1

/n section is moving at vw while the remaining
segments move at −vi.

We use a force balance to analyze the snail locomotion in steady state. The foot is
separated in two parts: the wave and the interwave. The forces on the interwave and wave
are :

Fi = Aiτi = Aiµiγ̇i

Fw = Awτw = Awµwγ̇w

for the thin, constant thickness layer,

Fi = Aiµi
V̂i − V̂s

h0

Fw = Awµw
V̂w − V̂s

h0

Because the waving motion is prescribed by the mechanism design, the wave and interwave
velocities V̂w and V̂i are measured with respect to the snail while vcm is measured in the lab
frame. The sum of forces equal the tractoring force in steady state,

Fi + Fw = Ft

The average velocity of any segment must equal zero with respect to the snail, 1
λ

∫ λ
0 V̂ dx =

0 which results in

V̂i = − V̂w
N−1 , therefore

Ft =
A

Nh0
[V̂w(µi − µw)− V̂s(µi(N − 1) + µw)]

This is the general equation for tractoring force given a Robosnail 2 mechanism config-
uration (N discrete pads moving with wave and interwave speeds). The result tells us that
movement of the pads cannot generate thrust when the viscosity of the fluid is constant
(Newtonian fluids)- the only force that occurs is viscous friction if the snail is being dragged.
The viscosity of the fluid in the interwave must be greater than the fluid in the wave for the
foot motion to create any positive tractoring force, and this is the case with real snails. We
can conclude from this result that the thrust would be forward for a shear-thinning fluid,
and backward for a shear-thickening fluid, where the viscosity in the slow interwave would
be less than that in the faster moving wave.
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It can be shown2 that for the discrete interwave/wave model with described above, the
foot cannot apply a net force on the substrate if the gap is filled with a Newtonian fluid. If,
however, the fluid is a Bingham fluid (or any fluid that exhibits a shear stress that is not
linear with shear rate), the behavior is different. In the following model we assume that the
fluid has not yielded underneath the interwave (A condition we are trying to maintain).

The tractoring force and resultant speed of the snail highly dependent on the viscosity
function of the fluid, and many results can be found using different types of non-Newtonian
fluids. It is important to keep in mind that the viscosity of non-Newtonian fluids depends
on the shearing rate itself, therefore evaluating the force equation is often nontrivial. The
Bingham fluid approximation provides certain simplifications which yield a useful analytic
result.

4.2.2 Bingham fluid approximation

One practical non-Newtonian fluid is the Bingham fluid, which is similar to Newtonian fluids
in that it the stress increases proportionally with strain rate, the only difference being that
a certain yield stress needs to be exceeded before the fluid starts to flow. Many clays can
be behave like Bingham fluids and are well approximated by the model. We can apply a
similar force-balance analysis as shown above using a Bingham fluid as lubricant.

We assume a Bingham fluid model for the non-Newtonian fluid filling the gap of uniform
thickness h0. The total contact area is A, divided into N discrete sections. Recall from the
Robosnail 2 model that at all times, 1

N of the area of the foot is moving upward with a speed

of Vw while the rest of the N−1
N segments are moving downward with a speed of −V̂w

N−1 . We
will refer to these two areas of the foot the wave and interwave, respectively. With respect
to the substrate, the wave moves forwards at V̂w − V̂t and the interwave moves backwards
with −V̂w

N−1 − V̂t. (Note that we desire V̂t to be usually negative.
Note the Bingham number

Bin =
τyh0

µV̂w

(4.5)

which is the ratio between the yield stress and the Newtonian fluid stress in the fluid.
Essentially, a larger BIngham number corresponds to a greater deviation from Newtonian
behavior, where the limit of Bin = 0 corresponds to zero yield stress and a Newtonian fluid.
The stress under the interwave τi will be rewritten as:

2When this is the case, the fast moving smaller section experiences a force of

Fwave = µ
A(Vw − Vt)

Nh0

The slow moving interwave section feels an opposing force of

Finterwave = µ
A(N − 1)(−V̂i + V̂t)

Nh0
= µ

A(N − 1)(−V̂w/(N − 1) − V̂t(N − 1))

Nh0

The total fluid force exerted on the tool is then

F = µ
A(V̂w − V̂t) + A(−V̂w − V̂t(N − 1))

Nh0
= −µ

AV̂t

h0

When we consider the a snail without tractoring force, the forces from foot motion exactly balance, and
the net force is due to the relative motion of the snail, V̂t. The snail will drift with a constant velocity
independent of V̂w.
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Figure 4-1: Force balance on a cylinder being conveyed using a Robosnail type-2 mechanism,
without slip.
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τi = fsτy

Where fs is a shear factor, or the fraction of the yield stress which is reached beneath
the interwaves. For there to be no slip locomotion, we intend that fs < 1. We will define
a safety factor S = 1

fs
to fit the standard engineering convention. The force balance on

the snail: On the wave: Fw = (τy + µ(Vw+Vt)
h0

) A
N On the interwave Fi = fsτy

N−1
N A On the

bottom face Ft = PAc

Fi = Ft + Fw

fsτy
N − 1

N
A = PAc + (τy +

µ(Vw + Vt)
h0

)
A

N

Solving for tractoring force:

Ft = PAc =
Aτy

N
(fs(N − 1)− 1

Bin

N

N − 1
− 1) (4.6)

The maximum force the tool can sustain without slipping is when fs = 1 and τi = τyield.
As long as the condition holds, there is no slip and the interwave velocity with respect to
the tool is zero

Vi − Vt =
−Vw

N − 1
− Vt = 0

and the tractoring velocity can be solved:

Vt = Vi = − Vw

N − 1

.

4.2.3 Motion with slippage

Once τi increases beyond τyield, the foot slips, and the forces in the wave and interwave are
both functions of the yield stress and the tangent viscosity.

Fw =
A

N
(τy + µ

Vw + Vt

h0
)

Fi =
(N − 1)A

N
(τy + µ

Vw
(N−1) − Vt

h0
)

defining vt = Vt
Vw

The force balance with slippage:

Ft =
A

N
τy[N − 2− Nvt

Bin
]

Which takes has a linear force-speed curve similar to Robosnail 1. Note that even with
slippage, there is a net motion.
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4.2.4 Power and Efficiency

Once the force and velocity relations are well defined, finding the power requirement is
straightforward. The total power consumed is the sum of the power required to move the
interwave and the power required to move the wave, while the useful power output is the
product of the tractoring force and the tractoring velocity.

℘ =
∑
j

Fjvj = FwaveVwave + FinterwaveVinterwave

η =
FtVt

℘

By substituting the equations for force and tractoring velocity, we arrive at the following
expressions for the power and efficiency:

Without slip:

℘ =
A

N
τyVw[1 + fs +

1
Bin

N

N − 1
]

η =
fs − N

Bin(N−1)2
− 1

N−1

1 + N
Bin(N−1) + fs

With slip:

℘ =
A

N
τyVw[2 +

1
Bin

N

N − 1
]

η =
(N − 2− Nvt

Bin )vt

2 + N
Bin(N−1)

Notice that as fs approaches 1, the power and efficiency expressions of the no-slip case
approach that of the slip case.

We can see that for higher Bingham numbers, a higher efficiency is possible. This
makes sense because high Bingham numbers represent a greater deviation between apparent
viscosities of the working fluid, while at lower Bingham number, the setup more resembles
the Newtonian case, which we have already proven cannot generate a tractoring force and
hence exhibits zero power output. For each efficiency curve, the curve intercepts the x-axis
at a nonzero fs; this is the point at which the snail starts moving, and before which a
forward Ft must be applied for the snail to be moving in the correct direction; the negative
required input power results in a negative efficiency. The highest efficiency occurs when
fs = 1. Efficiency decreases quickly at higher fs since any additional forces would be to
overcome viscous friction. Efficiency again falls to zero after a certain value of fs > 1; this
is where the interwave exerts just enough force to sustain the drag force of the wave.

4.3 Mechanical Design

An early incarnation ?? of Robosnail 2 employed N foot pads independently actuated by
lengths of Nitinol ”muscle wire”. The prototype, which used an external power source, was
lightweight enough to climb walls and move upside down using a thin layer of Laponite
suspension. However, our dissatisfaction with the complexity of the control, the slow re-
structuring time and low yield stress of the Laponite, and resultant small maximum size of
robosnail led us to continue development of an improved version.
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Figure 4-2: Tractoring efficiency for Robosnail 2, N = 6, varying the shear factor fs = τi
τy

.
Curves shown for Bin = 1, 2, 3, ... , 10. The bottom curve is for Bin = 1.
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Figure 4-3: The first version of Robosnail 2 used shape-memory (Nitinol) wires to actuate
the foot sections. This gave the advantage of compactness and minimized weight, but
disadvantages were the slow and small movements of the segments (limited by the strain
and cooling time required by the shape memory alloy) and the need for an umbilical cable.
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Figure 4-4: An exploded view of the internal transmission device of the second-generation
Robosnail 2. The circular structure is the cam, surrounded by 6 followers. The followers
each control one of the six foot segments in a linear motion.

The second finalized version of Robosnail (there were several trial versions that went
uncompleted) is powered by a single motor, carries its own battery pack, and operates on
an aqueous solution of Carbopol, a stronger yield-stress fluid with a faster restructuring
time.

At the heart of Robosnail 2 is the newly developed transmission assembly which gives the
separate foot pads their motion. The transmission consists of a slowly rotating disk/cam,
which is powered by the motor via gearbox, a set of six arms which follow the track, and
linkages between the arms and the foot pads. By guiding the positions of the arm tips as
it rotates, the track groove on the rotating disk defines the motion of the foot pads.

We recall from the theory that for N pads, we want one of the pads (at any instant
the wave pad) to be moving forward with a speed of V̂w, while the remaining pads move
backwards at V̂i. The track shape to fit these requirements is one composed of two linear
spirals, one steadily increasing radius over (N − 1)/N of the circle, and the other spiral
connecting the ends of the long spiral over 1/N of the circle. The foot pads of Robosnail 2
are each mounted on a rigid linear slide, so they slide forward and backwards with minimal
sideways deviation.
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Figure 4-5: Top and bottom views of the cam device.
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Figure 4-6: Displacement per cycle of Robosnail 2a, on Laponite solution 7.5 percent by
weight. The snail functioned the best at 0 incline, where gravity was not pulling the snail
against the direction of motion or away from the substrate. The worst performance occurred
at 90 degrees vertical incline, when the snail had the most force pulling against its intended
motion.

4.4 Experiment

The snail was run on a thin layer of fluid on various inclines. The fluid was first spread
onto the surface in a layer that was more or less constant in thickness, then the snail was
manually adhered to the surface. The first snail was tested with a solution of Laponite,
an aqueous suspension of synthetic clay. The second generation, motor-powered model
was tested solutions of Carbopol, a proprietary chemical of the Lubrizol corporation. The
Carbopol has a much higher yield stress and so was able to support the bulkier snail.

4.5 Results and Discussion

As we expected, the snail operated better upright on a horizontally oriented plane than
traveling up vertically or horizontally inverted. The worst results came from trying to move
up a vertically inclined plane, with gravity pulling on the full weight of the snail. While
inverted motion was not hindered by gravity in the direction of motion, the problem was
that gravity caused the snail to delaminate and peel away from the surface. The first test,
with the muscle wire snail operating on laponite, displayed the most forward motion at zero
degrees (horizontal motion) , and the least motion at around 90 degrees (vertical motion).
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Figure 4-7: Robosnail 2 tractoring force vs. normalized tractoring velocity

60



Chapter 5

Three-Link Swimmer

5.1 Introduction

The Three-link swimmer was inspired by E.M. Purcell in his talk ”Life at Low Reynolds
Number” :

There is a very funny thing about motion at low Reynolds number, which is
the following. ...if (an) animal tries to swim by a reciprocal motion, it can’t go
anywhere. Fast or slow, it exactly retraces its trajectory and it’s back where
it started. ... The moral of this is that the scallop at low Reynolds number is
no good. ...The simplest animal that can swim that way is an animal with two
hinges. I don’t know whether one exists ...”

In his talk, Purcell describes the realm of the low Reynolds number, where the effects
of viscosity totally dominate, and momentum effects are negligible. Almost all swimming
and flying organisms and devices known to man operate at high Reynolds number, where
propulsive forces are generated by momentum. Because of this paradigm shift, many of the
locomotion methods that are effective at low-Re are counterintuitive, and many high-Re
locomotion methods become useless at low-Re.

Figure 5-1 illustrates the motion of the swimmer described by Purcell. During one
cycle of motion, the swimmer executes four similar strokes. Because each of the fins flaps
independently and out-of-synch with the other flap, the motion is not reciprocal.

5.2 Theory

At the limit of low Reynolds number (the Stokes limit), the Navier-Stokes equations reduce
to the Stokes equations, which are time-independent [6, 1]. Because of this reversibility at
the Stokes limit, reciprocal motions generate no net displacements.

A two-link swimmer such a simplified scallop, for example, is only capable of opening
and closing. Whatever net motion experienced by the scallop in its opening stroke would be
cancelled exactly during the closing stroke. Likewise, the rightward tail swing of a fishlike
swimmer would cancel the effect of a leftward swing of its tail. Flapping wings, one of the
most efficient methods of high-Re propulsion, becomes useless in the Stokes limit. Because
of this property of reversibility, three links would be the minimum number of oscillating links
required to compose a successful swimmer. (For non-reciprocating joints, two can suffice:
as in the helical flagella swimmers, constant forward rotation in one direction comprises
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Figure 5-1: Motion sequence of three-link swimmer

non-reciprocal motion. Bacteria and sperm are two such helical flagella swimmers that
exist in nature.).

5.2.1 Physics

The symmetry of the theoretical swimmer and its stroke pattern, and the reciprocal motion
greatly simplify the analysis of the swimmer. In fact, one needs only analyze a single stroke
to understand the entire motion of the swimmer, and can conclude that the swimmer must
move in a straight line (Figure 5-2). This simplification is a result of two symmetries of the
motion cycle: the flap of one fin is identical to the time-reverse flap of the second fin, while
mirroring these two motions results in the third and fourth steps in the cycle.

There is also the question of the effect of increasing the size of the flapping fins in relation
to the body. When normalized to the full body length, the fins are limited to being either
zero length (an immobile body) or half the body length (no body, just fins, resulting in a
two-link swimmer or scallop). As either of these cases results in zero displacement, there
must be some optimal arm length a that maximizes the speed of the swimmer. Likewise,
the angle of the stroke can also be optimized. It was found by Tam that the best stroke (for
the planar swimmer composed of filaments) involves constant variation of both joints rather
than discrete motion of one after the other, and that there existed separate optimizations
for either maximizing the energy efficiency, or the displacement per cycle.
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Figure 5-2: Hypothetical motion of the three link swimmer. The swimmer starts at ”A”,
and flaps its right-side fin downward, moving the swimmer some x and y displacement δx,
δy. From reversibility, this is the same as the reverse motion from B to C, and the sequence
from C back to A is the same as the time-reverse mirror image from A to C. Thus we only
need to know the motion from A to B to understand the full cycle.

5.3 Mechanical Design

The three-link swimmer was built to have three panel-like linkages, as opposed to long,
narrow linkages as described in Purcell’s talk and the literature. This was a practical
compromise as the difficulties of placing the driving mechanism and power source in a
narrow linkage would increase to the point of impracticality for a device that was to be
small enough to operate at low Reynolds number.

The swimmer is powered by a clock spring, which led to a simpler design, and added the
benefit of making the actuation mechanism smaller and less negatively buoyant compared
to a motor-battery-gearbox assembly.

The spring generated a rotary motion, which would have to be translated to the recip-
rocal flapping of both end links (fins). To effect this flapping of the end links, we mounted
the spring on its inner end and attached the free end to a rotating ring. The outer edge of
the ring was shaped to have sloped sections in contact with part of the moving links/fins.
As the ring rotated, the sloped edge would flip the fins to the left and right, causing the
flapping motion. An important feature as discussed earlier was for the movement of one
fin not to be simultaneous with the motion of the other fin. This is solved by placing the
rotating axis of the ring to be offset from the imaginary line connecting the contact points
of the fin.

All of the parts, with the exception of the spring and some small fasteners, were machined
from polycarbonate and delrin plastics to keep the buoyancy to be as close as possible to
neutral with respect to glycerol and silicone oil, which would be the intended working fluid.
A small foam float was added to keep the device from sinking.

5.4 Experiment

As the only requirement for the fluid was for it to be Newtonian and of a significant viscosity,
there were several choices for operating fluid. For practical reasons, we chose silicone oil,
opposed to water soluble fluids, which would eventually corrode the steel clock-spring. The
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Figure 5-3: Exploded view of three-link swimmer

Figure 5-4: Exploded view of three-link swimmer
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Figure 5-5: Distance traveled for the three-link swimmer, normalized to total unfolded body
length, as a function of the fin/arm lengths. The data points at far left and far right (zero
body length, vs. symmetrical two-link swimmer) were automatically set to zero because
the theory predicts no motion. (The curve shown is a best-fit polynomial and not directly
related to the theory.)

mechanical swimmer was operated with clear fluid to first test that there was positive
travel. Later we put neutrally buoyant tracer particles and dye into the fluid to trace the
fluid motion.

Another test would be to increase or decrease the arm lengths in relation to the body
length and to experimentally find an optimal length to maximize the displacement per cycle.

5.5 Results and Discussion

First, the mechanical three-link swimmer successfully propelled itself through a high vis-
cosity Newtonian fluid at a rate of several percentages of the body length per cycle. The
displacement per cycle was shown to vary when the length of the arms were changed.
Two arm-lengths besides 1:1 were tried and the displacements were normalized to the total
swimmer length.

The experimental results seem to suggest an optimum arm size around b = 0.4, resulting
in the maximum measured swimmer velocity near 0.034 body lengths per cycle. The flow
around the three-link swimmer was fully 3D, and unlike the Becker swimmer, could not be
analyzed with the theory of thin bodies. However, the real swimmer experiment provided us
with qualitative information on the fluid dynamics of its swimming action. Like Becker, D.
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Tam conducted extensive numerical studies in the search for an optimized swimming stroke
and swimmer shape of a 3-link swimmer (Tam extends the analysis to compare optimal
n-link swimmers and swimmers with a body). As the findings of Tam and Becker suggests,
the optimized fin length is roughly equal to the body length, which was also the case for
our prototype swimmer.

Neutrally buoyant tracer particles (kalliroscope rheoscopic fluid in some tests and small
plastic beads in other runs) were planted in the fluid to trace the fluid motion as the swimmer
propelled itself past. This low-tech flow visualization method allowed us to understand
better the fluid dynamics of the swimmer.

Like any self - propelling body, the swimmer generates a thrust wake, pushing fluid
backwards as it moves forward. There is however a large region of fluid being pulled along
with the swimmer, as the no-slip condition is significant at the extremely low Reynolds
number. Lastly because the fluid is incompressible, the fluid is pulled in from the sides to
make up for the fluid moving to the fore and aft of the swimmer. Even after five cycles,
these flow characteristics are clearly visible in the tracer lines.
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Figure 5-6: The three-link swimming next to fluid tracers. As the swimmer moves, it drags
a portion of the fluid along with itself in the direction of motion, according to the no-slip
condition, while simultaneously sending fluid backward in order to propel itself forward. As
a result of fluid being forced forward and backward, the fluid is pulled in from either side
of the swimmer, contracting lengthwise gridlines.
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Chapter 6

Applications of Robosnail-type
devices

6.1 General Applications

Robosnail 1 and Robosnail 2 - type robots can find find use in a variety of applications which
require locomotion or the application of force, as long as high speeds are not essential. At
low Reynolds numbers, i.e. high viscosity or small size, a robosnail-1 type robot would be
effective in moving itself or other objects as long as there is a thin layer of fluid.

6.2 Downhole locomotion

In the oil drilling industry, it can be difficult to send various tools into the drilled holes,
which are filled with mud. Mud will often limit traction, creating a lubrication layer that
allows conventional gripping surfaces to slip on the substrate.

6.3 Rigless tool Deployment

In addition to sending powered tools and logging equipment into downholes, another ap-
plication would be to use a stationary device to push tools into the downhole. Current
technologies involve gripping tools with solid grippers, which risks damaging the surface of
the tools from the stress concentrations at the gripping point.
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Chapter 7

Conclusion

We have introduced three different types of locomotion, through viscous newtonian and
non-newtonian fluids. Research on robosnail 1 has shown that peristaltic waves of a mem-
brane can generate significant propulsive forces when lubricated with a newtonian fluid and
brought close to a solid substrate. The theory and numerical simulations reveal the various
characteristic forces and velocities that can be attained by changing the waving profile, and
experimental results confirm the results for the basic, sinusoidal wave shape. The numerical
simulations also showed the relative effect of leakage flows when the width of the snail was
finite.

Robosnail 2 exploited the non-newtonian properties of aqueous suspensions of carbopol
and laponite, shear-thinning fluids, to move in a way analogous to true snails which use
shear-thinning mucus to climb walls and ceilings. Successful tests of wall climbing proves
that snail like locomotion is indeed achievable for the mechanical device, using a synthetic
mucus.

The three-link swimmer was shown to propel itself successfully as Purcell predicted. It
was found that the swimming velocity was greatest when the fins were the same length as
the body, this being the expectation as much smaller or much larger fins would be closer to
the limiting cases where displacement is known to be zero.

7.1 Future work

The three-link swimmer was built as a proof-of-concept. While it functioned as we expected,
it did not consist of a geometry as mathematically simple as the forms studied by Becker
and Tam. The shape consisting of flattened panels was adopted as a matter of practicality.
Future generations of the three-link swimmer should incorporate thin filamentous sections;
we would expect the experimental results to closely match the theoretical results of Becker
and Tam. In addition to three-link swimmer, Tam wrote numerical simulations of n-link
swimmers, and found optimal swimming patterns for such multi-link devices. Experimental
verification of these as well as other swimming methods would be important in the quest
to build better low-Re devices.

Furthermore, the Tam swimmer varied from the prototype three-link swimmer in that
not only was the optimal geometry studied, but the stroke cycle. It was found that the
stroke pattern could be further optimized by incorporating overlapping strokes between the
two fins; in other words, one fin would still be moving when the second fin begins to flap.

This research was done with the intention to determine the feasibility of these new types
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of locomotion. While each of the devices was capable of locomotion in the way described by
the theory, they were rigid and could only move in a straight line. The next obvious step
would be to add control and steering. In the case of the snail, the goal would also include
taking full advantage of a snail’s flexibility by incorporating flexibility. The snail-like devices
shown here were limited also by the fact that they did not carry their own mucus supply,
unlike real snails. Future generations should be completely self-contained in this respect.
It was mentioned in chapter ?? that later versions of Robosnail 1 employing various wave
profiles would be optimized for various situations. It would be useful to design and test
prototype snails that used these non-sinusoidal wave profiles.
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